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Openness and Science

“Accessible and reusable data are fundamental to
science in order to continuously validate and build
upon previous research. Progressive expansive
scientific advance rests upon access to data
accompanied with sufficient information for
reproducible results, a scientific ethic to maximize
the utility of data to the research community, and a
foundational norm that scientific communication is
built on attribution.”

Crosas, King, Honaker, Sweeney (2015)



Attacks
Computer Science has destroyed the idea of
“deidentification” but it is still the normal practice in
social science data:
• anonymization techniques for data releases are
generally open to reidentification attacks
(Sweeney 1997, 2000, Narayanan & Shimatikov
2008);

• aggregated statistics can not have any privacy
guarantee (Dinur and Nissim 2003) -
fingerprinting (Bun, Ullman, Vadhan STOC 2014),
(Dwork, Smith, Steinke, Ullman, Vadhan FOCS
2015);

• even statistical estimates can leak individual
information (Ullman and Steinke 2013) - time
variance.



All of Social Science is Causal Inference.
King and Powell (2008); King Keohane and Verba (1994)

Regression is 90% of the rest.



A repository for sharing, citing, analyzing,
and preserving research data.

http://dataverse.org

http://dataverse.org


http://dataverse-demo.hmdc.harvard.edu

http://dataverse-demo.hmdc.harvard.edu




The Fundamental Tools of Social Science

• How to test experimental treatments (difference
of means) privately King and Powell (2008)

• How to match data privately
Iacus, King, Porro (2011); Ho, Imai, King, Stuart
(2007)

• How to compute summary statistics privately
Imai King Lau (2008)

• How to run regressions privately
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Figure : Distributions of differentially private statistics of
the difference of means estimate.
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Figure : Diff. of means estimates across 33 Indian states
for the treatment effect of JSY cash transfers to women
on the probability of delivering at a birthing center.
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Figure : Diff. of means estimates across 33 Indian states
for the treatment effect of JSY cash transfers to women
on the probability of delivering at a birthing center.



Conclusion

• The threat of reidentification is endemic in social
science research

• Access to data is central to open science and
progressive reuse

• Social science exploration revolves around
causal inference, summary statistics, and
regression – all of which we’ve made strides in

• Going forward sensitive data can be shared
through repositories such as Dataverse with
these tools


